
Undeniable Signal From the Unknown: CHIME Reveals Spinning Radio Object Behaving Unlike Anything Ever Observed
, a unique radio-emitting celestial object. 🌀 This object has an exceptionally slow spin period of 841 seconds and shows signs of accelerating rotation .
and shows signs of . 🔭 The discovery was made using the CHIME/FRB Pulsar Survey , which monitors the sky with high sensitivity.
, which monitors the sky with high sensitivity. 🧩 CHIME J1634+44 could redefine our understanding of long-period transients and challenge existing astrophysical models.
In a groundbreaking discovery, astronomers have detected a mysterious radio-emitting celestial object that defies current astrophysical understanding. This revelation, brought to light by the CHIME/FRB Pulsar Survey, introduces a unique cosmic entity that could challenge and expand our comprehension of long-period radio transients. Known as CHIME J1634+44, this extraordinary object not only spins at an unusually slow pace but also exhibits a rare phenomenon of accelerating rotation. Such an object has never been observed before, making this discovery a beacon for future astronomical research and exploration. A Signal with an 841-Second Beat and a Unique Pulse Structure
The enigmatic CHIME J1634+44 impresses with its remarkable spin period of 841 seconds, placing it among the slowest-rotating radio emitters ever documented. Even more intriguing is its secondary periodicity of 4,206 seconds, suggesting a possible interaction with a companion object, likely through gravitational or material dynamics. Since its discovery in October 2022, CHIME J1634+44 has been observed experiencing reactivation bursts, totaling an impressive 89 unique bursts over a span of 4.5 years.
This object stands out because of its consistent emission of fully circularly polarized radio bursts, a rarity among long-period emitters. Such characteristics imply that CHIME J1634+44 might not be a typical slow-rotating pulsar but rather something more exotic. It could potentially be a magnetic white dwarf, a magnetar, or an entirely new form of celestial object. This opens up exciting possibilities for scientists to explore and understand the nature of such cosmic phenomena.
'They Built Them by the Water!': New Study Uncovers Lost Nile Branch That Once Guided the Construction of the Egyptian Pyramids A Discovery Born from High-Precision Sky Monitoring
The revelation of CHIME J1634+44 was made possible by the CHIME/FRB single-pulse pulsar survey, which utilizes an advanced triggering algorithm to isolate signals within the Milky Way based on dispersion measures (DM). The researchers, as documented in their study, meticulously used the CHIME/FRB trigger criteria for all sources with a DM low enough to be considered within the Milky Way galaxy, according to both the NE2001 and the YMW16 DM models.
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) has been pivotal in uncovering a wide array of transient radio phenomena, ranging from fast radio bursts (FRBs) to more slowly varying emitters like CHIME J1634+44. Its capability to monitor vast sections of the sky with high sensitivity and temporal resolution is ideal for detecting these elusive, low-frequency signals, making CHIME an essential tool in the study of cosmic radio transients.
'They Can See Us Even in Silence': China's New Magnetic Wake Tech Shatters Submarine Stealth in Shallow Waters Like the Taiwan Strait Acceleration in Spin Suggests Powerful Forces at Play
A particularly unusual characteristic of CHIME J1634+44 is its accelerating spin, marked by a negative period derivative of approximately −9.03 seconds per second. This finding is unexpected, as known neutron stars or pulsars typically exhibit spin-down behavior due to energy loss through radiation or winds. The observed spin-up suggests either material accretion from a companion star or possibly energy injection via gravitational wave radiation.
If confirmed, this would make CHIME J1634+44 the first known long-period transient to exhibit such spin behavior, challenging current theoretical models and paving the way for new insights into angular momentum transfer in extreme astrophysical systems. This discovery could significantly alter our understanding of how these cosmic entities function and evolve, providing a fresh perspective on traditional pulsar mechanics.
'They Can Dodge Anything We Throw at Them': China's Secret Algorithm Outsmarts Even America's Most Advanced Hypersonic Defenses A Key to Unraveling the Long-Period Transient Puzzle
Long-period transients remain among the least understood types of radio sources. Their origins, emission mechanisms, and evolutionary pathways are largely speculative. The unique attributes of CHIME J1634+44 may hold the key to unraveling the mysteries surrounding this enigmatic class of astrophysical phenomena.
The researchers emphasize the scientific potential of CHIME J1634+44, describing it as an important test bed for long-period transient emission theories. Its distinctive traits—particularly the combination of long periodicity, spin acceleration, and circular polarization—set it apart from the known neutron star and magnetar populations. If ongoing and future observations can clarify the mechanisms behind its emissions, they may help astrophysicists distinguish between competing origin models and inspire new theoretical frameworks.
This discovery not only poses new questions about the nature of cosmic radio emitters but also challenges existing paradigms in astrophysics. As researchers continue to study CHIME J1634+44, they are likely to uncover insights that may redefine our understanding of the universe. What other cosmic mysteries lie hidden, waiting to be discovered through the eyes of advanced astronomical technology?
This article is based on verified sources and supported by editorial technologies.
Did you like it? 4.5/5 (20)
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Sustainability Times
2 days ago
- Sustainability Times
Deep-Space Water War: The 140-Trillion-Ocean Discovery That's Fueling Global Tensions, Wild Conspiracies, and Scientific Revolt
IN A NUTSHELL 💧 Astronomers discovered a colossal water reservoir in space, estimated to be 100 trillion times the volume of Earth's oceans, surrounding the quasar APM 08279+5255 . . 🌌 The quasar features a supermassive black hole at its center, with a mass equivalent to 20 billion suns, emitting energy comparable to 1 trillion suns. at its center, with a mass equivalent to 20 billion suns, emitting energy comparable to 1 trillion suns. 🔭 Advanced technology, including the Z-Spec spectrograph and other observatories, played a critical role in identifying and confirming the vast amount of water vapor. ✨ This discovery provides new insights into early quasar environments and the evolution of supermassive black holes, highlighting the universe's complexity and potential for further exploration. Space exploration continuously reveals awe-inspiring discoveries that expand our understanding of the universe. One such revelation is the detection of a colossal water reservoir in the cosmos, a find that transcends our previous comprehension of celestial bodies. This extraordinary water mass, estimated to be 100 trillion times the volume of Earth's oceans, orbits the quasar APM 08279+5255, located 12 billion light-years away. This discovery not only underscores the universe's vastness but also opens new avenues for understanding quasar environments and the formation of black holes. A Glance into the Cosmic Universe: Quasar APM 08279+5255's Massive Water Cloud APM 08279+5255 is no ordinary quasar. At its heart lies a supermassive black hole weighing as much as 20 billion suns, making it one of the most powerful known entities in the universe. This black hole is enveloped by an immense cloud of water vapor, spreading over several hundred light-years. The energy produced by this quasar equals that of 1 trillion suns, fueling the surrounding gas, dust, and matter spiraling into the black hole. Among the most remarkable aspects of this discovery is the sheer volume of water vapor. In stark contrast, the Milky Way contains significantly less gaseous water, most of which remains frozen. The substantial concentration of water in APM 08279+5255 suggests an environment capable of heating the encircling gas to emit intense X-rays and Infrared radiation, creating a hot and dense atmosphere. This phenomenon hints at the dynamic processes at play in quasars, offering a glimpse into the universe's complexity. 'We Never Thought It Could Be This Huge': Astronomers Stunned by 10-Milky-Way-Sized Gas Thread Connecting Distant Galaxies Discovery of Water Vapor Provides New Insights into Early Quasar Environments and the Growth of Black Holes The detection of water vapor in this distant quasar not only highlights the quasar itself but also the atmospheric conditions surrounding such astronomical phenomena. Water, often considered a minor molecule in space, proves invaluable in assessing the thermodynamic properties like temperature and pressure of gases. Despite the gas temperature near the quasar being relatively low, at about minus 63 degrees Fahrenheit, it is significantly warmer and denser than typical galactic gases found in the Milky Way. This finding holds significance as it aligns with the universe's earliest epochs, captured at a redshift of z=3.9, when the quasar was merely 1.6 billion years old. Understanding these early conditions helps scientists comprehend the evolution of supermassive black holes. In APM 08279+5255's case, the potential for the black hole to grow up to six times its current size due to available gas is conceivable. Yet, whether the black hole will consume all this gas, or if some will transform into stars or disperse into space, remains uncertain. 'It's a Crazy, Unexplainable Signal From Space': Repeating Radio Burst Every 2 Hours Baffles Scientists and Reveals New Star System Innovative Instruments Trace Water Vapor in Quasar, Paving Way for the Study of the Cosmic Dawn The discovery of this vast water reservoir is attributed to advanced millimeter and submillimeter technology. At the Caltech Submillimeter Observatory in Hawaii, researchers utilized the Z-Spec spectrograph to identify water vapor in a high-redshift quasar. Follow-up observations with the Plateau de Bure Interferometer and CARMA further confirmed both the presence and the magnitude of the water content. These innovative tools, though recently available, are pivotal in exploring the early universe and its expansion. Such technological advancements are critical for delving into the cosmic dawn, offering insights into the universe's formative stages. The large water vapor region around a quasar, driven by a supermassive black hole, showcases the universe's richness and potential for further black hole growth. With ongoing technological progress, astronomers are poised to unveil more about the universe's origins and evolution, enhancing our cosmic comprehension. For the First Time in History, Astronomers Capture the Moment a Distant Solar System Is Born in Deep Space The Impact of This Cosmic Discovery on Understanding Universe Evolution The recent discovery of the largest and most distant water reservoir in the universe provides a fresh perspective on cosmic evolution during primitive stages. This discovery highlights the vastness of the universe and the potential for more black holes to grow. As technology advances, it's increasingly likely that astronomers will uncover more about the universe's beginnings and its transformation over time. The presence of such a massive water reservoir in space challenges our understanding and invites further exploration into the early universe's mysteries. As we continue to unravel the secrets of the cosmos, this discovery stands as a testament to human curiosity and innovation. What other remarkable revelations await us in the vast expanse of space, and how will they reshape our understanding of the universe and our place within it? This article is based on verified sources and supported by editorial technologies. Did you like it? 4.6/5 (25)


France 24
4 days ago
- France 24
Walking 7,000 steps a day a huge boost to health: research
The most widely promoted target for people tracking their number of steps is 10,000 -- but that figure reportedly originally came from a 1960s marketing campaign for a Japanese pedometer. To find a more scientific target, an international team of researchers sifted through 57 previous studies that covered 160,000 people. The results published in the Lancet Public Health journal found that walking 7,000 steps a day nearly halved people's risk of early death from all causes, compared to 2,000 steps. The study also looked into health problems not previously covered by research into step counts. Walking 7,000 steps a day was linked to people's risk of dementia falling by 38 percent, depression dropping 22 percent and diabetes decreasing 14 percent. It was also associated with lower rates of cancer and falls, though the researchers warned this was based on less evidence. "You don't need to hit 10,000 steps a day to get major health benefits," Paddy Dempsey, a study co-author and medical researcher at Cambridge University, told AFP. "The biggest gains happen before 7,000 steps, and then benefits tend to level off," he said. While people's speeds vary widely, 7,000 steps adds up to roughly an hour of walking throughout the day. Dempsey emphasised that people already managing 10,000 or more steps should keep it up. But he had a message for people who might find 7,000 steps daunting: "don't be discouraged". "If you're only getting 2,000–3,000 steps a day, aim to add an extra 1,000 steps. That's just 10–15 minutes of light walking spread across the day," he said. Andrew Scott, a researcher at the University of Portsmouth not involved in the study, said that "it demonstrates that overall more is always better". "People should not focus too much on the numbers, particularly on days where activity is limited," he added. The World Health Organization recommends at least 150 minutes of moderate to intense physical activity a week. Nearly a third of people worldwide do not reach this target, according to the WHO.


Sustainability Times
7 days ago
- Sustainability Times
Undeniable Signal From the Unknown: CHIME Reveals Spinning Radio Object Behaving Unlike Anything Ever Observed
IN A NUTSHELL 🌌 An international team of astronomers discovered CHIME J1634+44 , a unique radio-emitting celestial object. , a unique radio-emitting celestial object. 🌀 This object has an exceptionally slow spin period of 841 seconds and shows signs of accelerating rotation . and shows signs of . 🔭 The discovery was made using the CHIME/FRB Pulsar Survey , which monitors the sky with high sensitivity. , which monitors the sky with high sensitivity. 🧩 CHIME J1634+44 could redefine our understanding of long-period transients and challenge existing astrophysical models. In a groundbreaking discovery, astronomers have detected a mysterious radio-emitting celestial object that defies current astrophysical understanding. This revelation, brought to light by the CHIME/FRB Pulsar Survey, introduces a unique cosmic entity that could challenge and expand our comprehension of long-period radio transients. Known as CHIME J1634+44, this extraordinary object not only spins at an unusually slow pace but also exhibits a rare phenomenon of accelerating rotation. Such an object has never been observed before, making this discovery a beacon for future astronomical research and exploration. A Signal with an 841-Second Beat and a Unique Pulse Structure The enigmatic CHIME J1634+44 impresses with its remarkable spin period of 841 seconds, placing it among the slowest-rotating radio emitters ever documented. Even more intriguing is its secondary periodicity of 4,206 seconds, suggesting a possible interaction with a companion object, likely through gravitational or material dynamics. Since its discovery in October 2022, CHIME J1634+44 has been observed experiencing reactivation bursts, totaling an impressive 89 unique bursts over a span of 4.5 years. This object stands out because of its consistent emission of fully circularly polarized radio bursts, a rarity among long-period emitters. Such characteristics imply that CHIME J1634+44 might not be a typical slow-rotating pulsar but rather something more exotic. It could potentially be a magnetic white dwarf, a magnetar, or an entirely new form of celestial object. This opens up exciting possibilities for scientists to explore and understand the nature of such cosmic phenomena. 'They Built Them by the Water!': New Study Uncovers Lost Nile Branch That Once Guided the Construction of the Egyptian Pyramids A Discovery Born from High-Precision Sky Monitoring The revelation of CHIME J1634+44 was made possible by the CHIME/FRB single-pulse pulsar survey, which utilizes an advanced triggering algorithm to isolate signals within the Milky Way based on dispersion measures (DM). The researchers, as documented in their study, meticulously used the CHIME/FRB trigger criteria for all sources with a DM low enough to be considered within the Milky Way galaxy, according to both the NE2001 and the YMW16 DM models. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) has been pivotal in uncovering a wide array of transient radio phenomena, ranging from fast radio bursts (FRBs) to more slowly varying emitters like CHIME J1634+44. Its capability to monitor vast sections of the sky with high sensitivity and temporal resolution is ideal for detecting these elusive, low-frequency signals, making CHIME an essential tool in the study of cosmic radio transients. 'They Can See Us Even in Silence': China's New Magnetic Wake Tech Shatters Submarine Stealth in Shallow Waters Like the Taiwan Strait Acceleration in Spin Suggests Powerful Forces at Play A particularly unusual characteristic of CHIME J1634+44 is its accelerating spin, marked by a negative period derivative of approximately −9.03 seconds per second. This finding is unexpected, as known neutron stars or pulsars typically exhibit spin-down behavior due to energy loss through radiation or winds. The observed spin-up suggests either material accretion from a companion star or possibly energy injection via gravitational wave radiation. If confirmed, this would make CHIME J1634+44 the first known long-period transient to exhibit such spin behavior, challenging current theoretical models and paving the way for new insights into angular momentum transfer in extreme astrophysical systems. This discovery could significantly alter our understanding of how these cosmic entities function and evolve, providing a fresh perspective on traditional pulsar mechanics. 'They Can Dodge Anything We Throw at Them': China's Secret Algorithm Outsmarts Even America's Most Advanced Hypersonic Defenses A Key to Unraveling the Long-Period Transient Puzzle Long-period transients remain among the least understood types of radio sources. Their origins, emission mechanisms, and evolutionary pathways are largely speculative. The unique attributes of CHIME J1634+44 may hold the key to unraveling the mysteries surrounding this enigmatic class of astrophysical phenomena. The researchers emphasize the scientific potential of CHIME J1634+44, describing it as an important test bed for long-period transient emission theories. Its distinctive traits—particularly the combination of long periodicity, spin acceleration, and circular polarization—set it apart from the known neutron star and magnetar populations. If ongoing and future observations can clarify the mechanisms behind its emissions, they may help astrophysicists distinguish between competing origin models and inspire new theoretical frameworks. This discovery not only poses new questions about the nature of cosmic radio emitters but also challenges existing paradigms in astrophysics. As researchers continue to study CHIME J1634+44, they are likely to uncover insights that may redefine our understanding of the universe. What other cosmic mysteries lie hidden, waiting to be discovered through the eyes of advanced astronomical technology? This article is based on verified sources and supported by editorial technologies. Did you like it? 4.5/5 (20)