
SpaceX delivers four astronauts to the International Space Station
Four US, Russian and Japanese astronauts pulled up in the SpaceX ship after launching from NASA's Kennedy Space Centre. They will spend at least six months in station orbiting Earth. Their flight had been delayed by one day due to bad weather.
The four moving into the ISS are NASA's Zena Cardman and Mike Fincke, Japan's Kimiya Yui and Russia's Oleg Platonov. 'Hello, space station!' Fincke radioed as soon as the capsule docked.
Cardman and another astronaut were pulled from a SpaceX flight last year to make room for NASA's two stuck astronauts, Boeing Starliner test pilots Butch Wilmore and Suni Williams. Their space station stay went from one week to more than nine months due to a faulty Boeing spacecraft.
Fincke and Yui had been training for the next Starliner mission. However, with Starliner grounded by thruster and other problems until 2026, the two switched to SpaceX.
Platonov was bumped from the Soyuz launch line-up several ago because of an undisclosed illness.
The arrival of the astronauts on Saturday temporarily puts the ISS population at 11. The astronauts greeting them had cold drinks and hot food waiting for them
The arriving astronauts will replace four colleagues who have already been in the ISS since March. Those four will be brought back as early as Wednesday.
While Saturday's arrival was speed by US standards, Russia holds the record for the fastest trip to the ISS at three hours.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Sustainability Times
a day ago
- Sustainability Times
NASA's Jaw-Dropping "Breakthrough" Promises to Reshape Our Understanding as James Webb Captures Alien-Like Planet Just 60 Light-Years Away
IN A NUTSHELL 🌌 The James Webb Space Telescope captured a direct image of the exoplanet 14 Herculis c, located 60 light-years from Earth. captured a direct image of the exoplanet 14 Herculis c, located 60 light-years from Earth. 🔍 Using a coronagraph , the telescope isolates the faint light of exoplanets from the bright glare of their host stars. , the telescope isolates the faint light of exoplanets from the bright glare of their host stars. 🌀 The inclined orbit of 14 Herculis c suggests significant past gravitational interactions within its planetary system. within its planetary system. 🌡️ The exoplanet's atmosphere contains gases like carbon dioxide and carbon monoxide, indicating complex atmospheric processes. The James Webb Space Telescope (JWST) has once again made headlines by capturing a direct image of 14 Herculis c, a distant exoplanet located approximately 60 light-years from Earth. This monumental achievement not only highlights the capabilities of the JWST but also opens new avenues in the study of planetary systems beyond our own. The exoplanet, orbiting a Sun-like star, presents intriguing features, including an unusual inclined orbit and a complex atmosphere. Through advanced techniques, scientists are now able to isolate and study the faint light emitted by these distant worlds, bringing us closer to understanding the universe's vast diversity. How the JWST Captures Images of Exoplanets The James Webb Space Telescope utilizes state-of-the-art technology to observe exoplanets, employing methods that allow it to overcome the challenges posed by the brightness of host stars. One of the critical tools used in this process is the coronagraph. This device effectively blocks out the overwhelming light from the stars, making the faint glow of surrounding planets detectable. This is particularly important because exoplanets typically emit light in the infrared spectrum, which is a range the JWST is specially equipped to observe. By focusing on infrared light, the JWST can reveal details about planets that would otherwise remain concealed from view. The telescope's capabilities extend far beyond simple detection. Scientists can employ sophisticated models to analyze the atmospheric composition and structural details of these distant worlds. This approach opens new avenues for understanding the diversity of planetary systems, offering insights into the formation and evolution of planets in the universe. 'China Wants to Catch Ghosts Under the Sea': World's Largest Underwater Telescope Could Unlock the Most Dangerous Secrets of the Universe Why Is the Orbit of 14 Herculis c So Unusual? The orbit of 14 Herculis c stands out due to its inclination, offering a glimpse into the turbulent past of its planetary system. This atypical orbit indicates that 14 Herculis c may have experienced significant gravitational interactions, potentially involving another planet that was expelled from the system. Such interactions are key to understanding the dynamics within young planetary systems. By analyzing these unusual orbital characteristics, scientists can reconstruct the history of the system, shedding light on the processes that may have shaped our own Solar System. Understanding these cosmic dynamics provides valuable insights into how planets migrate and settle into their current orbits. The study of such phenomena is crucial for piecing together the complex puzzle of planetary formation and stability. 'China Just Changed the Game' as Massive Zirconium Find Boosts Strategic Reserves 5-Fold and Sparks Pentagon Panic Over Hypersonic Race The Atmospheric Mysteries of 14 Herculis c 14 Herculis c presents a fascinating atmospheric profile that defies initial expectations. With an estimated atmospheric temperature of about 27°F, this exoplanet is cooler than initially anticipated. Its dim brightness compared to predictions suggests the presence of unique atmospheric processes, potentially involving gases such as carbon dioxide and carbon monoxide. The detection of these gases offers crucial clues about the planet's atmospheric composition and dynamic processes. Understanding these components is vital as they can significantly affect the planet's climate and potential habitability. The presence of such gases suggests a complex atmospheric chemistry, which may differ markedly from existing models of planetary atmospheres. This complexity calls for further research to unlock the mysteries of distant worlds and gain a deeper understanding of their environments. 'Nature Already Solved This' as Scientists Use Plant-Based Design to Reinvent Plastic and Fuel Fierce Clash Over Eco Hype Versus Real-World Impact The Implications of This Discovery The discovery of 14 Herculis c represents a significant milestone in the field of exoplanetary research, showcasing the JWST's pivotal role in advancing our knowledge of the universe. By enabling the exploration of colder and older worlds, this discovery underscores the importance of continued investment in space exploration technology. The JWST's ability to provide a more profound understanding of exoplanets not only enriches our scientific knowledge but also ignites curiosity about the possibility of life beyond Earth. As we delve deeper into the secrets of the cosmos, we are reminded of the universe's vastness and complexity. This discovery prompts us to question what other wonders remain hidden, waiting to be unveiled by future generations of astronomers. What new technologies and techniques will be developed to further push the boundaries of our understanding of the universe? This article is based on verified sources and supported by editorial technologies. Did you like it? 4.5/5 (22)


Sustainability Times
2 days ago
- Sustainability Times
Scientists Panic as "Unknown Forces" Beneath Earth's Crust Threaten to Unleash Disaster on Billions Worldwide, Dividing Experts on Planet's Fate
IN A NUTSHELL 🌍 The South Atlantic Anomaly (SAA) is a region of weakened magnetic field over South America, posing risks to space technology. is a region of weakened magnetic field over South America, posing risks to space technology. 🛰️ Satellites passing through the SAA face exposure to high-energy particles, leading to potential single event upsets and system malfunctions. and system malfunctions. 🔄 The anomaly is dynamically changing , drifting northwest and splitting into two lobes, increasing hazards for spacecraft. , drifting northwest and splitting into two lobes, increasing hazards for spacecraft. 🔬 NASA uses satellite data and core simulations to model the magnetic field's evolution and improve mission planning. The South Atlantic Anomaly (SAA) is a region of weakened magnetic field stretching over South America and the South Atlantic Ocean, posing significant challenges to space technology and scientific research. This anomaly has drawn the attention of NASA and the global scientific community due to its potential impact on satellite operations and the insights it offers into Earth's magnetic dynamics. As the anomaly evolves, understanding its mechanisms is crucial to mitigating risks to technological infrastructure and advancing our knowledge of Earth's internal processes. Deep Origins and Complex Mechanisms The South Atlantic Anomaly (SAA) stands as a significant geomagnetic phenomenon, captivating scientists with its complex origins and potential implications. Characterized by a substantial reduction in magnetic intensity, the SAA disrupts the otherwise protective magnetic shield of Earth, allowing high-energy solar particles to approach closer to the surface. This magnetic weakness is intricately linked to the geodynamo, a process within Earth's outer core where molten iron and nickel movements generate the planet's magnetic field. The formation of the SAA is influenced by the tilt of Earth's magnetic axis relative to its rotational axis, as well as the presence of the African Large Low Shear Velocity Province, a massive dense structure beneath the African continent. These factors contribute to a local polarity reversal, weakening the dipole field intensity in the vicinity of the SAA. Understanding these mechanisms is crucial for predicting the anomaly's evolution and its broader implications for Earth's magnetic field. 'We Can't Believe Our Eyes': NASA Scientists Stunned by Discovery of a Massive Glowing Ocean Creature Visible from Space A Threat to Space Technology The South Atlantic Anomaly poses significant risks to space technology, particularly satellites traversing the affected region. Exposure to high levels of energetic protons can lead to single event upsets (SEUs), causing temporary malfunctions, data corruption, or even permanent damage to critical systems. To mitigate these risks, satellite operators often implement preventive measures, such as shutting down non-essential systems when passing through the anomaly. The International Space Station (ISS), which orbits through the SAA, has reported occasional 'glitches' and resets, resulting in data loss. While the ISS's shielding protects astronauts, external instruments remain vulnerable. Other missions, like the Ionospheric Connection Explorer (ICON), closely monitor the SAA to adjust their operations and minimize disruptions. As the anomaly continues to evolve, safeguarding space technology remains a pressing challenge for the scientific community. 'NASA Sounds the Alarm': Unprecedented Planetary Surge Linked to Unknown Deep-Earth Force Now Spreading at Global Scale Dynamic Evolution and Challenges The South Atlantic Anomaly is not a static phenomenon. Recent data from the ESA's Swarm constellation and NASA's SAMPEX mission reveal troubling trends. The anomaly is gradually drifting northwest, expanding in surface area, and, since 2020, beginning to split into two distinct lobes. This bifurcation increases the number of hazardous zones for spacecraft, complicating the task of scientists developing predictive models of geomagnetic conditions. Understanding the changing morphology of the SAA is crucial for ensuring the safety of current and future satellites. As the anomaly evolves, continuous monitoring and adaptation in satellite operations are necessary to mitigate potential disruptions. These developments underscore the importance of ongoing research and international collaboration to address the challenges posed by the SAA. 'These Creatures Could Rewrite the Rules of Life': Deep-Sea Microbes on Earth Mirror What May Be Thriving Beneath Europa's Ice Anticipating the Invisible To enhance understanding and predictions of the South Atlantic Anomaly, NASA combines satellite data with simulations of Earth's core dynamics. These inputs contribute to global models like the International Geomagnetic Reference Field (IGRF), which track the evolution of Earth's magnetic field. These models are essential for planning space missions and gaining insights into the planet's internal structure. While the current evolution of the SAA is unprecedented in the space era, geological records suggest that such anomalies are not exceptional over long timescales. Importantly, scientists assert that the current SAA is not an early indicator of a magnetic pole reversal, a natural phenomenon occurring over hundreds of thousands of years. Studying the SAA remains a vital research area, crucial for protecting orbiting technologies and deepening our understanding of Earth's magnetic dynamics. As the South Atlantic Anomaly continues to evolve, it poses intriguing questions about the future of Earth's magnetic dynamics and the potential impact on our technological and scientific pursuits. How will ongoing changes in the SAA shape our understanding of Earth's magnetic field and influence our ability to safeguard space technology in the coming years? This article is based on verified sources and supported by editorial technologies. Did you like it? 4.4/5 (25)


Euronews
2 days ago
- Euronews
SpaceX delivers four astronauts to the International Space Station
A new crew was delivered to the International Space Station (ISS) by SpaceX on Saturday, who made the trip in only 15 hours. Four US, Russian and Japanese astronauts pulled up in the SpaceX ship after launching from NASA's Kennedy Space Centre. They will spend at least six months in station orbiting Earth. Their flight had been delayed by one day due to bad weather. The four moving into the ISS are NASA's Zena Cardman and Mike Fincke, Japan's Kimiya Yui and Russia's Oleg Platonov. 'Hello, space station!' Fincke radioed as soon as the capsule docked. Cardman and another astronaut were pulled from a SpaceX flight last year to make room for NASA's two stuck astronauts, Boeing Starliner test pilots Butch Wilmore and Suni Williams. Their space station stay went from one week to more than nine months due to a faulty Boeing spacecraft. Fincke and Yui had been training for the next Starliner mission. However, with Starliner grounded by thruster and other problems until 2026, the two switched to SpaceX. Platonov was bumped from the Soyuz launch line-up several ago because of an undisclosed illness. The arrival of the astronauts on Saturday temporarily puts the ISS population at 11. The astronauts greeting them had cold drinks and hot food waiting for them The arriving astronauts will replace four colleagues who have already been in the ISS since March. Those four will be brought back as early as Wednesday. While Saturday's arrival was speed by US standards, Russia holds the record for the fastest trip to the ISS at three hours.