logo
Astronomers Spy Jets Spewing from Megacomet Zooming through the Solar System

Astronomers Spy Jets Spewing from Megacomet Zooming through the Solar System

There's a giant ball of ice barreling through the solar system right now, and it's bigger than any we've seen before. It poses no threat to Earth, but this comet, called C/2014 UN271 (Bernardinelli-Bernstein), has enraptured astronomers ever since its discovery in 2021. The hulking object, sometimes jovially called a 'megacomet,' is 100 times bigger than most comets we see in the solar system. And now we're learning more about it than ever before as it zooms toward its closest approach to our sun in 2031.
In a study published in the Astrophysical Journal Letters on June 12, Nathan Roth of American University and his colleagues report the first conclusive detection of carbon monoxide on the megacomet. That's a crucial finding because it might tell us more about the object's origins, history and likely upcoming behavior as it dives deeper into the solar system. 'We wanted to test what drives activity in this comet,' Roth says. 'It's so far from the sun and so cold that trying to explain what makes a comet 'work' at these distances is difficult.'
C/2014 UN271 was first imaged by chance in observations from 2014. Seven years later, when astronomers actually spotted it in their archives, the comet was at more than 20 times the Earth-sun distance, inside the orbit of Neptune. But they also found that it is on a path that will bring it nearly to Saturn's orbit in 2031 before it heads out again. The comet's orbit is huge, extending out to about 55,000 times the Earth-sun distance—87 percent of a light-year and well out into the Oort Cloud of icy objects that surrounds our sun.
On supporting science journalism
If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.
Following the comet's discovery astronomers used various telescopes, including the James Webb Space Telescope and the Hubble Space Telescope, to scrutinize it from afar. The object was initially thought to be as big as 370 kilometers (230 miles) across. Revised observations showed it to be about 140 kilometers (87 miles) wide. But that's still the biggest anyone has ever seen—most comets in the solar system are only one or two kilometers across. 'It's huge,' says Quanzhi Ye, an astronomer at the University of Maryland, who was not involved in Roth's study. 'It represents a part of the cometary spectrum that we don't understand.'
Some of those observations revealed bursts of activity from the comet, which sprouted an enormous, enveloping 'coma' of expelled gas that stretches some 250,000 kilometers (155,000 miles) across (more than half the distance from the Earth to the moon). To find out the cause of this activity, Roth and his team used the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to observe the comet in radio waves for about eight hours in March 2024.
They found a clear trace of carbon monoxide spewing from the comet, suggesting that its sprawling coma is fueled, at least in part, by carbon monoxide ice sublimating—turning from solid to gas—as the comet approaches the sun. The carbon monoxide appears to be vented in jets from spots on the object's surface, possibly the result of the overhead sun heating a localized region and causing the ice to sublimate.
'If you were standing on the comet, and the sun was right overhead, this is the area where the sun is heating the surface the most and the jet originates from,' Roth says. What's not clear so far, however, is how fast the comet is spinning and whether the location of the jets is changing over time. 'Are there different jets being activated at different times? We don't know yet,' Roth says.
As C/2014 UN271 gets closer, other ices that are often found on comets, such as methane and hydrogen sulfide ice, might start to sublimate, too, and add their own contributions to the object's activity. 'As we continue to monitor it, we'll be able to get a better idea of the chemical fingerprint that's preserved inside the comet,' Roth says.
Rosita Kokotanekova, an astronomer at the Rozhen National Astronomical Observatory in Bulgaria, who was not part of Roth's research team, says the detection of carbon monoxide is useful because it is 'important to identify what prompts activity at these large distances.' Researchers have witnessed gas venting from other, much smaller comets at a similar distance, 'which was very puzzling,' she adds. 'People were trying to figure out what exactly is causing this activity [so far from the sun].'
C/2014 UN271's size makes it an especially alluring target for study. The presence of carbon monoxide ice is doubly interesting: Analysis of available data about the comet revealed that it exhibited signs of activity when it was more than 25 times as far out as the Earth-sun distance. But according to theoretical models, its carbon monoxide ice should have been sublimated by the sun's rays when the object was even farther out in the solar system. This discrepancy may mean the comet made a pass of the sun before, with sublimation first eating away at layers of ice on its surface and its current activity only being kickstarted at closer distances, when heat from sunlight reached ice deeper within the object.
Finding a behemoth like C/2014 UN271, Kokotanekova says, could hint at the existence of a whole class of gigantic progenitor comets. Such comets might have been the first large, icy objects to coalesce in the solar system, after which they may could have eventually broken apart to form smaller comets. 'It's possible that the small objects are mostly fragments, while the large ones, like UN271, have never collided with anything,' she says.
That might mean there are more primordial megacomets awaiting discovery. If so, the recently completed Vera C. Rubin Observatory in Chile, which will begin a 10-year panoramic survey of the heavens later this year, could find more of them. 'It's so sensitive that it will certainly pick up comets of this size, quite probably even further away from us,' Ye says.
Rubin's wide eye on the sky should also give us more information on C/2014 UN271 itself, says Meg Schwamb, an astronomer at Queen's University Belfast uninvolved with this latest finding. 'Rubin's going to watch it come in,' she says. That could help us get a better handle on its activity, in partnership with telescopes like ALMA. 'You need both of those pieces of information—if it got brighter, and whether the amount of carbon monoxide changed—to tell you what's going on,' Schwamb says.
For now Comet UN271 remains a fascinating target of study, a giant comet like no other that is giving us a unique window into the dark frontiers of the outer solar system. 'This is just an incredibly exciting object,' Roth says. And, for astronomers eager to learn more about this and other mega comets, the best is yet to come.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

A Comet 85 Miles Wide Is Erupting In The Solar System — What To Know
A Comet 85 Miles Wide Is Erupting In The Solar System — What To Know

Forbes

time14 hours ago

  • Forbes

A Comet 85 Miles Wide Is Erupting In The Solar System — What To Know

The largest comet ever found has jets of carbon monoxide gas erupting from its 85-mile (140-kilometer) wide nucleus. Comet Bernardinelli-Bernstein (C/2014 UN271) was studied while it was more than halfway to Neptune using a radio telescope array in Chile's Atacama desert. It will enter the inner solar system in 2031, but it won't come as close to the sun as Earth. An artist rendition of comet C/2014 UN271, the largest known comet in the Oort Cloud. NSF/AUI/NSF NRAO/ Using the powerful Atacama Large Millimeter/submillimeter Array radio telescope in Chile, researchers observed comet Bernardinelli-Bernstein while it was more than halfway to Neptune, at a distance of 16.6 times the distance between the sun and Earth. In a major milestone in the study of distant solar system objects, observations by astronomers in March 2024 uncovered molecular activity in the comet in the form of jets of carbon monoxide gas erupting from its nucleus. It's the first detection of carbon monoxide outgassing in a comet at such a great distance. Comet Bernardinelli-Bernstein is more than 10 times the size of most known comets, so large that it's classified as a 'minor planet.' It's thought to orbit the sun only once every 600,000 years, with its next closest approach in 2031. The comet was discovered by astronomers Dr. Pedro Bernardinelli and Gary Bernstein on June 19, 2021, using archival data from the Dark Energy Survey. Comet Bernardinelli-Bernstein is doing something unexpected. A comet's nucleus is a solid core of rock and ice. When a comet gets close to the sun, its nucleus heats up, and the ice vaporizes to form its glowing coma (head) and tail. The new observations, in a paper published in The Astrophysical Journal Letters , reveal complex and evolving jets of carbon monoxide gas erupting from the comet Bernardinelli-Bernstein's nucleus. The jets were seen on the sun-facing side of the comet, suggesting that carbon dioxide — not ice — is the volatile compound when a comet is so far from the sun. It's the first direct evidence of what drives a comet's activity when it's so cold and distant. This sequence from the Hubble Space Telescope in 2022 shows how the nucleus of Comet C/2014 UN271 ... More (Bernardinelli-Bernstein) was isolated from a vast shell of dust and gas surrounding the solid icy nucleus. SCIENCE: NASA, ESA, Man-To Hui (Macau University of Science and Technology), David Jewitt (UCLA) IMAGE PROCESSING: Alyssa Pagan (STScI) 'These measurements give us a look at how this enormous, icy world works,' said lead author Nathan Roth of American University and NASA Goddard Space Flight Center. 'We're seeing explosive outgassing patterns that raise new questions about how this comet will evolve as it continues its journey toward the inner solar system.' Outgassing — the release of frozen gases — is expected to continue, with astronomers expecting to see jets of other frozen gases, notably methane and formaldehyde, as comet Bernardinelli-Bernstein gets closer to the sun over the next few years. This diagram compares the size of the icy, solid nucleus of comet C/2014 UN271 ... More (Bernardinelli-Bernstein) to several other comets. NASA, ESA, Zena Levy Largest Comet Ever Found Comet Bernardinelli-Bernstein is the largest comet ever observed from the Oort Cloud, which NASA describes as being like a big, thick bubble around the solar system. The Oort Cloud lies far beyond Pluto and is home to millions of comets. However, it's not quite the largest comet ever found. That title goes to comet Sarabat (C/1729), the so-called 'Great Comet of 1729,' which was visible to the naked eye. Forbes Don't Miss This Weekend's Sky Show — The Moon, Venus And A Star Cluster By Jamie Carter Forbes Iceland Unveils Festival For First Total Solar Eclipse Since 1954 By Jamie Carter Forbes Get Ready For The Shortest Day Since Records Began As Earth Spins Faster By Jamie Carter

Rocket Lab Completes Record Launch Turnaround From Launch Complex 1, Successfully Deploys 68 th Electron Mission
Rocket Lab Completes Record Launch Turnaround From Launch Complex 1, Successfully Deploys 68 th Electron Mission

Business Wire

time14 hours ago

  • Business Wire

Rocket Lab Completes Record Launch Turnaround From Launch Complex 1, Successfully Deploys 68 th Electron Mission

MAHIA, New Zealand--(BUSINESS WIRE)--Rocket Lab Corporation (Nasdaq: RKLB) ('Rocket Lab' or 'the Company'), a global leader in launch services and space systems, today successfully launched its 68th Electron rocket to deploy a single satellite to space for a confidential commercial customer. The mission was the second of two launches from the same launch site in less than 48 hours, a new launch record for the Company as it continues to deliver dedicated, repeatable and reliable access to space for satellite operators. The 'Symphony In The Stars' mission lifted-off from Rocket Lab Launch Complex 1 in Mahia, New Zealand on June 28 th (7:08 p.m./07:08 UTC) to deploy a single spacecraft to a 650km circular Earth orbit. The mission was the first of two dedicated launches for the new customer on Electron booked less than four months ago, with a second mission scheduled before the end of 2025. Rocket Lab has now completed four launches in June for commercial satellite constellation operators, underscoring Electron's consistent performance and rapid deployment capabilities as the world's leading small launcher: the 'Full Stream Ahead' mission on June 3 rd; 'The Mountain God Guards' mission on June 11 th; 'Get The Hawk Outta Here' launched on June 26 th UTC, and today's 'Symphony In The Stars' mission. Rocket Lab Founder and CEO, Sir Peter Beck, says: 'Electron has demonstrated once again that it is the gold standard for responsive and reliable space access for small satellites. The future of space is built on proven performance, and Electron continues to deliver against a stacked launch manifest this year. Congratulations to the team on achieving its fastest launch turnaround yet between two missions from Launch Complex 1. This launch was also a quick-turn mission to meet our customer's mission requirements, and we're looking forward to doing it again later this year.' 'Symphony In The Stars' was Rocket Lab's tenth Electron mission of 2025 and its 68th launch overall. With 100% mission success so far this year, Electron continues to deliver reliable deployment amid an increasing launch cadence and rapid contract-to-launch timelines. Launch images: About Rocket Lab Founded in 2006, Rocket Lab is an end-to-end space company with an established track record of mission success. We deliver reliable launch services, satellite manufacture, spacecraft components, and on-orbit management solutions that make it faster, easier, and more affordable to access space. Headquartered in Long Beach, California, Rocket Lab designs and manufactures the Electron small orbital launch vehicle, a family of spacecraft platforms, and the Company is developing the large Neutron launch vehicle for constellation deployment. Since its first orbital launch in January 2018, Rocket Lab's Electron launch vehicle has become the second most frequently launched U.S. rocket annually and has delivered over 200 satellites to orbit for private and public sector organizations, enabling operations in national security, scientific research, space debris mitigation, Earth observation, climate monitoring, and communications. Rocket Lab's spacecraft platforms have been selected to support NASA missions to the Moon and Mars, as well as the first private commercial mission to Venus. Rocket Lab has three launch pads at two launch sites, including two launch pads at a private orbital launch site located in New Zealand and a third launch pad in Virginia. Forward Looking Statements This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. We intend such forward-looking statements to be covered by the safe harbor provisions for forward looking statements contained in Section 27A of the Securities Act of 1933, as amended (the 'Securities Act') and Section 21E of the Securities Exchange Act of 1934, as amended (the 'Exchange Act'). All statements contained in this press release other than statements of historical fact, including, without limitation, statements regarding our launch and space systems operations, launch schedule and window, safe and repeatable access to space, Neutron development, operational expansion and business strategy are forward-looking statements. The words 'believe,' 'may,' 'will,' 'estimate,' 'potential,' 'continue,' 'anticipate,' 'intend,' 'expect,' 'strategy,' 'future,' 'could,' 'would,' 'project,' 'plan,' 'target,' and similar expressions are intended to identify forward-looking statements, though not all forward-looking statements use these words or expressions. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements, including but not limited to the factors, risks and uncertainties included in our Annual Report on Form 10-K for the fiscal year ended December 31, 2024, as such factors may be updated from time to time in our other filings with the Securities and Exchange Commission (the 'SEC'), accessible on the SEC's website at and the Investor Relations section of our website at which could cause our actual results to differ materially from those indicated by the forward-looking statements made in this press release. Any such forward-looking statements represent management's estimates as of the date of this press release. While we may elect to update such forward-looking statements at some point in the future, we disclaim any obligation to do so, even if subsequent events cause our views to change.

The James Webb Space Telescope has photographed its first undiscovered planet
The James Webb Space Telescope has photographed its first undiscovered planet

Yahoo

timea day ago

  • Yahoo

The James Webb Space Telescope has photographed its first undiscovered planet

When you buy through links on our articles, Future and its syndication partners may earn a commission. Photographers often can't get enough light – but by blocking out some light, the largest telescope launched into space has photographed what could be its first previously undiscovered planet. NASA's James Webb Space Telescope has photographed what researchers believe is a new exoplanet, dubbed TWA 7 b. While the new exoplanet is estimated to be around the mass of Saturn, the TWA 7 b is believed to be the lightest planet ever seen using the Mid-Infrared Instrument imaging. The exoplanet orbits the star TWA 7, around 34 light-years from Earth. One of the challenges in locating new, distant planets is that the stars they orbit typically give off so much light that the planet's dimmer light is lost in the star's brightness. The James Webb Space Telescope compensates for this using the coronagraph technique. A coronagraph is a technique that requires blocking off light from a star in order to see objects otherwise lost in the star's brightness. By blocking off the star's brightness – the black circular gap marked by the star icon in the photograph above – scientists were able to see evidence of TWA 7 b. The new exoplanet hasn't yet been confirmed – NASA notes that there's a small chance that the object in the photograph is a background galaxy rather than an exoplanet. But as scientists continue to research the find, the evidence points to the shape being the James Webb Telescope's first discovery of a previously unknown planet. The telescope's ability to photograph the mid-infrared has enabled the James Webb to aid scientists in studying distant but known planets for the last three years. Now, the technology inside the telescope has allowed for the discovery of what appears to be an undiscovered planet. The James Webb Telescope – the largest ever to launch into space – is designed to detect light outside what humans can see with the naked eye. The near and mid-infrared capabilities of the telescope are helping scientists explore what NASA describes as otherwise hidden regions of space. Infrared technology is key to photographing distant space objects through clouds of dust, as well as low-energy stars and planets like brown dwarfs and young protostars. The infrared technology inside the James Webb has allowed the TWA 7 b to be detected through the three dust rings that surround that system's star. The exoplanet is positioned in a gap in the dust disks, leading scientists to theorize that the planet could be what's shaping the dust structures. While ongoing work is needed to confirm the object as a planet and record additional observations, the photograph also illustrates Webb's potential to find previously unseen planets. The research was published earlier this week in Nature. Browse the best lenses for astrophotography or find inspiration in these star photography tips.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store