
The Bright Side: Runners in T-rex costumes turn US racecourse into prehistoric playground
The Sunday event started in 2017 as a pest control company's team-building activity.
The actual dinosaur roamed the planet between 65 million and 67 million years ago. A study published four years ago in the journal Science estimated about 2.5 billion of the dinosaurs roamed Earth over the course of a couple million years.
Hollywood movies such as the 'Jurassic Park' franchise have added to the public fascination with the ancient carnivorous creature.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Sustainability Times
a day ago
- Sustainability Times
'100 Million Years Buried': Ancient Rock Unleashes Shock Discovery of 40 Squid Species Scientists Never Knew Existed
IN A NUTSHELL 🦑 Scientists discovered 40 new squid species from a 100-million-year-old rock, highlighting ancient ocean diversity. from a 100-million-year-old rock, highlighting ancient ocean diversity. 🔬 The team used grinding tomography to reveal a dense assemblage of fossilized cephalopod beaks . to reveal a dense assemblage of fossilized . 🌊 Findings suggest squids were dominant swimmers in the Cretaceous ocean, challenging previous assumptions. in the Cretaceous ocean, challenging previous assumptions. 📚 Published in the journal Science, this research reshapes our understanding of ancient marine ecosystems. In a groundbreaking discovery that reshapes our understanding of ancient marine life, a team of paleontologists has unearthed a treasure trove of fossilized squid beaks from a 100-million-year-old rock. This remarkable find, which includes 263 squid specimens and reveals 40 previously unknown species, highlights the richness of squid diversity during the Cretaceous period. By employing advanced fossil analysis techniques, scientists have opened a new window into the past, challenging long-held beliefs about ocean ecosystems in the age of dinosaurs. The Ancient Ocean: A Squid Paradise The high seas of the dinosaur era were teeming with a plethora of squids, a fact that has been brought to light through this new study. A collaboration between paleontologists in Japan and Germany has led to the discovery of a vast number of fossilized cephalopod beaks hidden in a 100-million-year-old rock. Among these were 263 squid samples, including 40 species of ancient squids that scientists had never seen before. This finding underscores the abundance of squids in the Cretaceous ocean, despite the rarity of their fossilized remains. The presence of these large and numerous squids suggests they played a significant role in the marine food chain, possibly as dominant predators or agile survivors in a competitive ecosystem. Shin Ikegami, a paleobiologist from Hokkaido University and the first author of the research, highlights the significance of this discovery. 'In both number and size, these ancient squids clearly prevailed the seas,' he says. 'Their body sizes were as large as fish and even bigger than the ammonites we found alongside them. This shows us that squids were thriving as the most abundant swimmers in the ancient ocean.' '8,000 Dinosaur Bones Found': Canada's Fossil Graveyard Reveals One of the Most Terrifying Prehistoric Mass Death Sites Ever Unearthed The Science Behind the Discovery To truly appreciate this remarkable find, one must understand the scientific process that led to its discovery. Fossilization typically requires body parts that decompose slowly, allowing the rigorous fossilization process to preserve them. Most fossils consist of bones, teeth, shells, and claws, while soft body parts require exceptional fossilization circumstances. Squids, being composed mostly of soft body parts, leave behind few traces in the fossil record. However, their hard, chitinous beaks can survive the test of time, providing vital clues about the evolution of cephalopods—a group that includes octopuses, nautiluses, and cuttlefish. Before this study, only a single fossilized squid beak had ever been found. The challenge of extracting and studying small marine fossils from jumbled assemblages often hindered research. To overcome this, researchers employed a technique called grinding tomography. This method involves gradually sanding away a rock sample, layer by thin layer, while capturing high-resolution images of each layer. Although the sample itself is destroyed, the resulting images can be compiled digitally to reveal the rock's interior contents in three dimensions, offering highly detailed reconstructions of the fossils within. 'Hidden for 80 Million Years': Rare Dinosaur Egg Reveals Stunning Secrets Through Groundbreaking CT Scan Analysis Revolutionizing Fossil Analysis with Grinding Tomography Ikegami and his colleagues utilized grinding tomography to examine a piece of fossil-rich rock dating back approximately 100 million years. Within this dense assemblage of animal remnants, they discovered around 1,000 cephalopod beaks, among which the squid beaks emerged. These beaks were tiny and thin, ranging in length from 0.05 to 0.76 inches, with an average length of about 0.15 inches. The minimum thickness was always less than 0.0004 inches. The scientists assert that these results demonstrate how numerous squid beaks are hidden as millimeter-scaled microfossils, explaining why they have been overlooked in previous studies. This breakthrough has profound implications for our understanding of Cretaceous marine ecosystems. Based on their findings, the researchers inferred that the Cretaceous squid biomass would have far exceeded the biomasses of fishes and ammonites. This suggests that squid diversification had exploded by around 100 million years ago, contradicting the previous assumption that squids only began to thrive after the mass extinction event that ended the dinosaur age, approximately 66 million years ago. 'I Seen Predatory Horse With Razor Teeth': Scientists Unveil 86-Million-Year-Old T. Rex Ancestor That Redefines Dinosaur Evolution Implications for Our Understanding of Ancient Marine Life These findings offer a fresh perspective on the evolution of marine life. According to paleontologist Yasuhiro Iba of Hokkaido University, 'Squids were probably the pioneers of fast and intelligent swimmers that dominate the modern ocean.' This research challenges long-held assumptions about marine ecosystems in the past and highlights the adaptability and resilience of squids over millions of years. The study, published in the prestigious journal Science, underscores the significance of advanced fossil analysis techniques in uncovering hidden aspects of Earth's history. The discovery of these ancient squid beaks not only enriches our understanding of cephalopod evolution but also invites further exploration into the mysteries of the deep past. As scientists continue to push the boundaries of fossil analysis, one question remains: What other secrets lie hidden beneath layers of rock, waiting to reshape our understanding of Earth's ancient inhabitants? Our author used artificial intelligence to enhance this article. Did you like it? 4.5/5 (21)


France 24
a day ago
- France 24
The Bright Side: Runners in T-rex costumes turn US racecourse into prehistoric playground
Spectators cheered as participants ran down the track cloaked in inflatable Tyrannosaurus rex costumes during the T-Rex World Championship Races at Emerald Downs in Auburn, Washington. The Sunday event started in 2017 as a pest control company's team-building activity. The actual dinosaur roamed the planet between 65 million and 67 million years ago. A study published four years ago in the journal Science estimated about 2.5 billion of the dinosaurs roamed Earth over the course of a couple million years. Hollywood movies such as the 'Jurassic Park' franchise have added to the public fascination with the ancient carnivorous creature.


Sustainability Times
4 days ago
- Sustainability Times
'Time Breaks Down at Quantum Scale': New Scientific Discovery Shocks Physicists and Redefines the Laws of the Universe
IN A NUTSHELL 🔍 Physicists in England discovered two opposing arrows of time in open quantum systems, challenging traditional views. in open quantum systems, challenging traditional views. 🌌 The study suggests time can move in both directions at the quantum level , revealing a symmetrical nature. , revealing a symmetrical nature. ♻️ Entropy continues to increase in both directions of time, prompting a reevaluation of thermodynamic principles. continues to increase in both directions of time, prompting a reevaluation of thermodynamic principles. 🧠 The findings raise profound questions about the nature of reality and time's role within the universe. Time, often perceived as a relentless, forward-moving arrow, is a concept that has intrigued scientists and philosophers alike. While everyday experiences reinforce the notion of time's unidirectional flow, recent research suggests a more nuanced understanding at the quantum level. A groundbreaking study led by physicists in England has revealed the existence of two arrows of time in open quantum systems, challenging traditional views and opening new avenues for exploration in the realms of thermodynamics and quantum mechanics. The Enigma of Time's Arrow Time's arrow, a metaphor for its unidirectional flow, is a cornerstone of our understanding of the universe. Yet, this seemingly straightforward concept has baffled physicists who seek to understand why time flows only in one direction. In classical physics, equations often ignore the directionality of time. For example, a pendulum's motion appears identical whether viewed forwards or backwards. However, in reality, time's arrow is clearly asymmetrical, moving from past to future. This dichotomy raises fundamental questions about the nature of time and its underlying mechanisms. Over two years, a research team in England delved into this mystery, focusing on open quantum systems—systems that interact with their environment. Their findings, published in Scientific Reports, reveal the existence of two arrows of time moving in opposite directions. This discovery not only challenges our traditional understanding but also suggests that time's behavior at the quantum level is more complex than previously thought. 'This One Sentence Changed Everything': Emotionally Intelligent People Swear by This Powerful Phrase to Command Respect and Build Deep Connections Open Quantum Systems: A New Perspective To unravel the mysteries of time at the quantum level, scientists turned their attention to open quantum systems. Unlike closed systems, which are isolated from external influences, open systems interact with their surroundings, resulting in changes over time. This interaction is key to understanding time's passage at the subatomic level. Energy dissipation, or entropy, serves as a proxy for time's flow. As energy dissipates into the environment, it indicates the direction of time. The research team's model demonstrated that these open systems allow for the emergence of two arrows of time, a phenomenon not observed in closed systems. In their equations, the team observed 'slightly modified' results, suggesting that two trajectories—one moving forward in time and the other backward—are equally possible. This duality presents a radical shift in our perception of time, suggesting a symmetrical nature that defies conventional understanding. 'Britain Just Sent This Beast Into the Sky': UK Unleashes First Combat Drone With 5,750-Mile Strike Range Implications for Thermodynamics and Beyond The study's findings have significant implications for fields such as thermodynamics, cosmology, and quantum mechanics. At the heart of these disciplines is the concept of entropy, described by the second law of thermodynamics as a tendency toward disorder. The team discovered that even with two arrows of time, entropy's progression remains consistent, hurdling toward disorder regardless of time's direction. This revelation challenges the notion of irreversible processes and suggests a more complex relationship between time and entropy. As Andrea Rocco, the study's senior author, explains, the results prompt a reevaluation of assumptions about time's function in the universe. While the study does not confirm speculative ideas about time's origins, such as the emergence of twin universes at the Big Bang, it provides a framework for rethinking these concepts. 'They Found a Goblin in the Rocks': On a Unearths Terrifying Jurassic Lizard Bolg With a Face Straight Out of a Horror Film Rethinking the Nature of Time The discovery of twin arrows of time raises profound questions about our understanding of reality. Although the research does not entertain the idea of time travel or constructing time machines, it highlights the theoretical possibility of two equally valid time trajectories. Once the arrow takes a direction, familiar dynamics like entropy come into play, reinforcing time's irreversible nature. Rocco likens the concept to a network of roads, where the paths are visible, but the traffic direction remains unknown. This metaphor underscores the complexity and intrigue surrounding time's behavior at the quantum level. The study's implications extend beyond academic interest, touching upon fundamental issues about the nature of reality and time's role within it. The exploration of time's duality in open quantum systems offers a fresh perspective on a timeless enigma. By revealing the possibility of two arrows of time, the research invites us to reconsider our assumptions and delve deeper into the mysteries of the universe. What other secrets might time hold, waiting to be uncovered by future scientific inquiry? Our author used artificial intelligence to enhance this article. Did you like it? 4.6/5 (27)