logo
Scientists find lead really can be turned into gold (with help from the Large Hadron Collider)

Scientists find lead really can be turned into gold (with help from the Large Hadron Collider)

Engadget11-05-2025
One of the ultimate goals of medieval alchemy has been realized, but only for a fraction of a second. Scientists with the European Organization for Nuclear Research, better known as CERN, were able to convert lead into gold using the Large Hadron Collider (LHC), the world's most powerful particle accelerator. Unlike the examples of transmutation we see in pop culture, these experiments with the LHC involve smashing subatomic particles together at ridiculously high speeds to manipulate lead's physical properties to become gold.
The LHC is often used to smash lead ions together to create extremely hot and dense matter similar to what was observed in the universe following the Big Bang. While conducting this analysis, the CERN scientists took note of the near-misses that caused a lead nucleus to drop its neutrons or protons. Lead atoms only have three more protons than gold atoms, meaning that in certain cases the LHC causes the lead atoms to drop just enough protons to become a gold atom for a fraction of a second — before immediately fragmenting into a bunch of particles.
Alchemists back in the day may be astonished by this achievement, but the experiments conducted between 2015 and 2018 only produced about 29 picograms of gold, according to CERN. The organization added that the latest trials produced almost double that amount thanks to regular upgrades to the LHC, but the mass made is still trillions of times less than what's necessary for a piece of jewelry. Instead of trying to chase riches, the organization's scientists are more interested in studying the interaction that leads to this transmutation.
"It is impressive to see that our detectors can handle head-on collisions producing thousands of particles, while also being sensitive to collisions where only a few particles are produced at a time, enabling the study of electromagnetic 'nuclear transmutation' processes," Marco Van Leeuwen, spokesperson for the A Large Ion Collider Experiment project at the LHC, said in a statement.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Astonishing 'halo' of high-energy particles around giant galaxy cluster is a glimpse into the early universe
Astonishing 'halo' of high-energy particles around giant galaxy cluster is a glimpse into the early universe

Yahoo

time2 days ago

  • Yahoo

Astonishing 'halo' of high-energy particles around giant galaxy cluster is a glimpse into the early universe

When you buy through links on our articles, Future and its syndication partners may earn a commission. A vast cloud of energetic particles surrounding a cluster of galaxies that existed around four billion years after the Big Bang could help scientists discover how the early universe took shape. But was the halo of the massive cluster of galaxies — called SpARCS104922.6+564032.5, and located 9.9 billion light-years from Earth— built by erupting supermassive black holes or a cosmic particle accelerator? This envelope of radio-emitting particles — a so-called "radio mini-halo," though it isn't really mini at all — is the most distant example of such a structure ever detected. Its distance is double that of the next farthest radio mini-halo, with its radio signal having taken 10 billion years to reach Earth — the majority of the universe's 13.8 billion-year lifespan. The discovery, made with the LOFAR (LOw Frequency ARray) radio instrument in Europe, indicates that galaxy clusters, which are some of the largest structures in the known universe, spend most of their existence wrapped in envelopes of high-energy particles. This insight gives scientists a better idea of how energy flows around galaxy clusters. And that in turn could improve our picture of cosmic evolution, study members said. "It's astonishing to find such a strong radio signal at this distance," study co-leader Roland Timmerman, an astronomer at Durham University in England, said in a statement. "It means these energetic particles and the processes creating them have been shaping galaxy clusters for nearly the entire history of the universe." The team posited two possible explanations for the formation of this mini-halo. One possibility is that the supermassive black holes at the hearts of the galaxies in the cluster are ejecting jets of high-energy particles and settling around their home cluster. One problem with this theory, however, is explaining how these particles have managed to maintain their energy as they take their place in a gigantic cloud. The second possible explanation is the existence of a natural particle collider around the galactic cluster. Particles in the hot ionized gas, or plasma, around the cluster may be slamming together at near light-speeds, resulting in the highly energetic particles in the halo. Related Stories: — This baby galaxy cluster is powering extreme star formation with a hidden fuel tank — Our expanding universe: Age, history & other facts — World's largest visible light telescope spies a galaxy cluster warping space-time The team behind the new research believes their results offer a rare chance to observe a galaxy cluster just after it has formed. It also suggests that galactic clusters are filled with energetic particles for billions of years longer than had previously been thought. And further study of this distant radio mini-halo should reveal just where these charged particles originated, according to the scientists. The team's research has been accepted for publication in the Astrophysical Journal Letters, with a preprint version available on the research repository arXiv.

Astronomers see the 1st stars dispel darkness 13 billion years ago at 'Cosmic Dawn'
Astronomers see the 1st stars dispel darkness 13 billion years ago at 'Cosmic Dawn'

Yahoo

time2 days ago

  • Yahoo

Astronomers see the 1st stars dispel darkness 13 billion years ago at 'Cosmic Dawn'

When you buy through links on our articles, Future and its syndication partners may earn a commission. Astronomers have used ground-based telescopes for the first time to peer back 13 billion years in time to observe the universe when the first stars first lifted the cosmic darkness. This period, around 800 million years after the Big Bang, is known as "Cosmic Dawn," and it remains one of the most mysterious and important periods in the evolution of the universe. This new glimpse of Cosmic Dawn comes courtesy of the Cosmology Large Angular Scale Surveyor (CLASS), an array of telescopes located high in the Atacama Desert region of Northern Chile. The primary mission of CLASS is to observe the Cosmic Microwave Background (CMB), a cosmic fossil left over from an event just after the Big Bang. "People thought this couldn't be done from the ground. Astronomy is a technology-limited field, and microwave signals from the Cosmic Dawn are famously difficult to measure," team leader and Johns Hopkins professor of physics and astronomy, Tobias Marriage, said in a statement. "Ground-based observations face additional challenges compared to space. Overcoming those obstacles makes this measurement a significant achievement." Prior to around 380,000 years after the Big Bang, the infant universe would have seemed like a pretty dull place, visually at least. That is because during this period, light was unable to travel freely due to the fact that photons were endlessly scattered by free electrons. This situation changed when the universe had expanded and cooled enough to allow electrons to bond with protons and create the first neutral atoms of hydrogen. Suddenly, photons were free to travel unimpeded through the cosmos as the universe instantly went from transparent to opaque. This "first light" is seen today as the CMB. When the first stars formed, their intense radiation ripped electrons from neutral hydrogen once again, an event called "reionization," turning the universe dark again during an epoch known as the "Cosmic Dark Ages." The signal from Cosmic Dawn hunted by CLASS comes from the fingerprint of the universe's first stars within the CMB. This comes in the form of polarized microwave light around a million times fainter than standard cosmic microwaves. As you may imagine, after travelling to us for 13 billion years and more, the light from Cosmic Dawn is extremely faint. Trying to detect this polarized microwave light from Earth is extremely difficult because it is drowned out by natural events such as atmospheric changes and temperature fluctuations, as well as being obscured by human-made signals like radio waves, radar and satellite signals. Thus, this cosmic radiation is usually only hunted from space by satellites like NASA's Wilkinson Microwave Anisotropy Probe (WMAP) and the European Space Agency's Planck space telescope. That was until CLASS. The team behind this new research compared data from CLASS with observations from Planck and WMAP. This allowed them to identify sources of interference and hone in on a signal from polarized microwave light in the CMB. Polarization describes what happens when waves are oriented in the same direction. This can happen when light hits an object and scatters off it. "When light hits the hood of your car and you see a glare, that's polarization. To see clearly, you can put on polarized glasses to take away glare," said team member Yunyang Li, who was a PhD student at Johns Hopkins and then a fellow at the University of Chicago while this research was being conducted. "Using the new common signal, we can determine how much of what we're seeing is cosmic glare from light bouncing off the hood of the Cosmic Dawn, so to speak." What this team specifically aims to measure with CLASS is the probability of a photon from the CMB encountering an electron ripped free of neutral hydrogen by the universe's first stars and being scattered. Doing this should help scientists better define signals from the CMB and the initial glow of the Big Bang, thus enabling them to paint a clear picture of the infant cosmos. "Measuring this reionization signal more precisely is an important frontier of cosmic microwave background research," WMAP space mission team leader Charles Bennett said. "For us, the universe is like a physics lab. Better measurements of the universe help to refine our understanding of dark matter and neutrinos, abundant but elusive particles that fill the universe. "By analyzing additional CLASS data going forward, we hope to reach the highest possible precision that's achievable." Related Stories: — How dark energy could relieve 'Hubble tension' and galaxy headaches — Hubble trouble or Superbubble? Astronomers need to escape the 'supervoid' to solve cosmology crisis — 'Our understanding of the universe may be incomplete': James Webb Space Telescope data suggests we need a 'new cosmic feature' to explain it all This new research is built upon earlier work that saw CLASS map 75% of the night sky over Earth as it makes precise measurements of the polarization of the CMB. "No other ground-based experiment can do what CLASS is doing," said Nigel Sharp, program director in the National Science Foundation (NSF) Division of Astronomical Sciences, supporter of CLASS since 2010. "The CLASS team has greatly improved measurement of the cosmic microwave polarization signal, and this impressive leap forward is a testament to the scientific value produced by NSF's long-term support."The team's research was published on Wednesday (June 2) in The Astrophysical Journal.

Where do atoms come from? A physicist explains.
Where do atoms come from? A physicist explains.

Yahoo

time25-06-2025

  • Yahoo

Where do atoms come from? A physicist explains.

When you buy through links on our articles, Future and its syndication partners may earn a commission. Curious Kids is a series for children of all ages. If you have a question you'd like an expert to answer, send it to CuriousKidsUS@ How do atoms form? —Joshua, age 7, Shoreview, Minnesota Richard Feynman, a famous theoretical physicist who won the Nobel Prize, said that if he could pass on only one piece of scientific information to future generations, it would be that all things are made of atoms. Understanding how atoms form is a fundamental and important question, since they make up everything with mass. The question of where atoms comes from requires a lot of physics to be answered completely — and even then, physicists only have good guesses to explain how some atoms are formed. An atom consists of a heavy center, called the nucleus, made of particles called protons and neutrons. An atom has lighter particles called electrons that you can think of as orbiting around the nucleus. The electrons each carry one unit of negative charge, the protons each carry one unit of positive charge, and the neutrons have no charge. An atom has the same number of protons as electrons, so it is neutral − it has no overall charge. Now, most of the atoms in the universe are the two simplest kinds: hydrogen, which has one proton, zero neutrons and one electron; and helium, which has two protons, two neutrons and two electrons. Of course, on Earth there are lots of atoms besides these that are just as common, such as carbon and oxygen, but I'll talk about those soon. An element is what scientists call a group of atoms that are all the same, because they all have the same number of protons. Most of the universe's hydrogen and helium atoms formed around 400,000 years after the Big Bang, which is the name for when scientists think the universe began, about 14 billion years ago. Why did they form at that time? Astronomers know from observing distant exploding stars that the size of the universe has been getting bigger since the Big Bang. When the hydrogen and helium atoms first formed, the universe was about 1,000 times smaller than it is now. And based on their understanding of physics, scientists believe that the universe was much hotter when it was smaller. Before this time, the electrons had too much energy to settle into orbits around the hydrogen and helium nuclei. So, the hydrogen and helium atoms could form only once the universe cooled down to something like 5,000 degrees Fahrenheit (2,760 degrees Celsius). For historical reasons, this process is misleadingly called recombination − combination would be more descriptive. The helium and deuterium — a heavier form of hydrogen — nuclei formed even earlier, just a few minutes after the Big Bang, when the temperature was above 1 billion F (556 million C). Protons and neutrons can collide and form nuclei like these only at very high temperatures. Scientists believe that almost all the ordinary matter in the universe is made of about 90% hydrogen atoms and 8% helium atoms. So, the hydrogen and helium atoms formed during recombination, when the cooler temperature allowed electrons to fall into orbits. But you, I and almost everything on Earth is made of many more massive atoms than just hydrogen and helium. How were these atoms made? The surprising answer is that more massive atoms are made in stars. To make atoms with several protons and neutrons stuck together in the nucleus requires the type of high-energy collisions that occur in very hot places. The energy needed to form a heavier nucleus needs to be large enough to overcome the repulsive electric force that positive charges, like two protons, feel with each other. Protons and neutrons also have another property — kind of like a different type of charge — that is strong enough to bind them together once they are able to get very close together. This property is called the strong force, and the process that sticks these particles together is called fusion. Scientists believe that most of the elements from carbon up to iron are fused in stars heavier than our Sun, where the temperature can exceed 1 billion F (556 million C) — the same temperature that the universe was when it was just a few minutes old. But even in hot stars, elements heavier than iron and nickel won't form. These require extra energy, because the heavier elements can more easily break into pieces. In a dramatic event called a supernova, the inner core of a heavy star suddenly collapses after it runs out of fuel to burn. During the powerful explosion this collapse triggers, elements that are heavier than iron can form and get ejected out into the universe. Astronomers are still figuring out the details of other fantastic stellar events that form larger atoms. For example, colliding neutron stars can release enormous amounts of energy — and elements such as gold — on their way to forming black holes. Understanding how atoms are made just requires learning a little general relativity, plus some nuclear, particle and atomic physics. But to complicate matters, there is other stuff in the universe that doesn't appear to be made from normal atoms at all, called dark matter. Scientists are investigating what dark matter is and how it might form. This edited article is republished from The Conversation under a Creative Commons license. Read the original article.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store